Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
J Nanobiotechnology ; 22(1): 148, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570776

RESUMO

Kaempferol (KA), an natural antioxidant of traditional Chinese medicine (TCM), is extensively used as the primary treatment for inflammatory digestive diseases with impaired redox homeostasis. Severe acute pancreatitis (SAP) was exacerbated by mitochondrial dysfunction and abundant ROS, which highlights the role of antioxidants in targeting mitochondrial function. However, low bioavailability and high dosage of KA leading to unavoidable side effects limits clinical transformation. The mechanisms of KA with poor bioavailability largely unexplored, hindering development of the efficient strategies to maximizing the medicinal effects of KA. Here, we engineered a novel thioketals (TK)-modified based on DSPE-PEG2000 liposomal codelivery system for improving bioavailability and avoiding side effects (denotes as DSPE-TK-PEG2000-KA, DTM@KA NPs). We demonstrated that the liposome exerts profound impacts on damaging intracellular redox homeostasis by reducing GSH depletion and activating Nrf2, which synergizes with KA to reinforce the inhibition of inadequate fission, excessive mitochondrial fusion and impaired mitophagy resulting in inflammation and apoptosis; and then, the restored mitochondrial homeostasis strengthens ATP supply for PAC renovation and homeostasis. Interestingly, TK bond was proved as the main functional structure to improve the above efficacy of KA compared with the absence of TK bond. Most importantly, DTM@KA NPs obviously suppresses PAC death with negligible side effects in vitro and vivo. Mechanismly, DTM@KA NPs facilitated STAT6-regulated mitochondrial precursor proteins transport via interacting with TOM20 to further promote Drp1-dependent fission and Pink1/Parkin-regulated mitophagy with enhanced lysosomal degradation for removing damaged mitochondria in PAC and then reduce inflammation and apoptosis. Generally, DTM@KA NPs synergistically improved mitochondrial homeostasis, redox homeostasis, energy metabolism and inflammation response via regulating TOM20-STAT6-Drp1 signaling and promoting mitophagy in SAP. Consequently, such a TCM's active ingredients-based nanomedicine strategy is be expected to be an innovative approach for SAP therapy.


Assuntos
Quempferóis , Pancreatite , Humanos , Doença Aguda , Quempferóis/farmacologia , Quempferóis/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Inflamação/metabolismo
2.
Acta Cir Bras ; 39: e391424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511762

RESUMO

PURPOSE: XinJiaCongRongTuSiZiWan (XJCRTSZW) is a traditional Chinese medicine compound for invigorating the kidney, nourishing blood, and promoting blood circulation. This study aimed to explore the effect of XJCRTSZW on triptolide (TP)-induced oxidative stress injury. METHODS: Adult female Sprague-Dawley rats and human ovarian granulosa cell lines were treated with TP and XJCRTSZW. Hematoxylin and eosin staining, enzyme-linked immunosorbent assay, flow cytometry, CCK-8, JC-1 staining, transmission electron microscopy, reverse transcription-quantitative polymerase chain reaction, and Western blotting were performed in this study. RESULTS: XJCRTSZW treatment observably ameliorated the TP-induced pathological symptoms. Furthermore, XJCRTSZW treatment observably enhanced the TP-induced reduction of estradiol, anti-Mullerian hormone, progesterone, superoxide dismutase, ATP content, mitochondrial membrane potential, p62, and Hsp60 mRNA, and protein levels in vivo and in vitro (p < 0.05). However, TP-induced elevation of follicle stimulating hormone and luteinizing hormone concentrations, malondialdehyde levels, reactive oxygen species levels, apoptosis rate, mitophagy, and the mRNA and protein expressions of LC3-II/LC3-I, PTEN-induced kinase 1 (PINK1), and Parkin were decreased (p < 0.05). In addition, XJCRTSZW treatment markedly increased cell viability in vitro (p < 0.05). CONCLUSIONS: XJCRTSZW protects TP-induced rats from oxidative stress injury via the mitophagy-mediated PINK1/Parkin pathway.


Assuntos
Diterpenos , Mitocôndrias , Mitofagia , Fenantrenos , Adulto , Ratos , Feminino , Humanos , Animais , Ratos Sprague-Dawley , Estresse Oxidativo , Ubiquitina-Proteína Ligases , Transdução de Sinais , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Compostos de Epóxi
3.
J Hazard Mater ; 465: 133411, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181596

RESUMO

Excessive consumption of fluoride can cause skeletal fluorosis. Mitophagy has been identified as a novel target for bone disorders. Meanwhile, calcium supplementation has shown great potential for mitigating fluoride-related bone damage. Hence, this study aimed to elucidate the association between mitophagy and skeletal fluorosis and the precise mechanisms through which calcium alleviates these injuries. A 100 mg/L sodium fluoride (NaF) exposure model in Parkin knockout (Parkin-/-) mice and a 100 mg/L NaF exposure mouse model with 1% calcium carbonate (CaCO3) intervention were established in the current study. Fluoride exposure caused the impairment of mitochondria and activation of PTEN-induced putative kinase1 (PINK1)/E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy and mitochondrial apoptosis in the bones, which were restored after blocking Parkin. Additionally, the intervention model showed fluoride-exposed mice exhibited abnormal bone trabecula and mechanical properties. Still, these bone injuries could be effectively attenuated by adding 1% calcium to their diet, which reversed fluoride-activated mitophagy and apoptosis. To summarize, fluoride can activate bone mitophagy through the PINK1/Parkin pathway and mitochondrial apoptosis. Parkin-/- and 1% calcium provide protection against fluoride-induced bone damage. Notably, this study provides theoretical bases for the prevention and therapy of animal and human health and safety caused by environmental fluoride contamination.


Assuntos
Fluoretos , Mitofagia , Humanos , Camundongos , Animais , Fluoretos/farmacologia , Cálcio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Mitocôndrias , Ubiquitina-Proteína Ligases , Apoptose , Suplementos Nutricionais
4.
Anatol J Cardiol ; 28(1): 55-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38167793

RESUMO

BACKGROUND: The aim of this study was to examine the effect of myricetin on cardiac dysfunction caused by high fructose intake. METHODS: Fructose was given to the rats as a 20% solution in drinking water for 15 weeks. Myricetin was administered by oral gavage for the last 6 weeks. Systolic blood pressure was measured by tail-cuff method. The effects of isoprenaline, phenylephrine, and acetylcholine on cardiac contractility and rhythmicity were recorded in the isolated right atrium and left ventricular papillary muscles. In addition to biochemical measurements, the cardiac expressions of cellular stress-related proteins were determined by western blotting. RESULTS: Myricetin improved systolic blood pressure but did not affect body weight, plasma glucose, and triglyceride levels in fructose-fed rats. The impairment of isoprenaline- and phenylephrine-mediated increases in atrial contraction and sinus rate in fructose-fed rats was restored by myricetin treatment. Isoprenaline, phenylephrine, and acetylcholine-mediated papillary muscle contractions were not changed by fructose or myricetin administration. The expression of the mitochondrial fission marker dynamin-related protein 1 and the mitophagic marker PTEN-induced kinase 1 (PINK1) was enhanced in the fructose-fed rat, and myricetin treatment markedly attenuated PINK1 expression. High-fructose intake augmented phosphorylation of the proinflammatory molecule Nuclear factor kappa B (NF-κB) and the stress-regulated kinase JNK1, but myricetin only reduced NF-κB expression. Moreover, myricetin diminished the elevation in the expression of the pro-apoptotic Bax. CONCLUSION: Our results imply that myricetin has a protective role in cardiac irregularities induced by a high-fructose diet through reducing systolic blood pressure, improving cardiac adrenergic responses, suppressing PINK1, NF-κB, and Bax expression, and thus reflecting a potential therapeutic value.


Assuntos
Cardiopatias , NF-kappa B , Ratos , Animais , Pressão Sanguínea , NF-kappa B/metabolismo , Acetilcolina/farmacologia , Frutose , Isoproterenol , Proteína X Associada a bcl-2/farmacologia , Fenilefrina/farmacologia , Proteínas Quinases/farmacologia
5.
Anticancer Agents Med Chem ; 24(1): 50-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37921146

RESUMO

BACKGROUND: Numerous studies have proven the efficacy and safety of natural products, and are widely used as attractive cancer treatments. The investigation of effective natural products for improving cancer treatment is a promising strategy. Combination treatment with radiosensitizers and radiotherapy (RT) is considered necessary for therapeutic improvement in head and neck squamous cell carcinoma(HNSCC). OBJECTIVE: This study aims to investigate whether Ephedra sinica (ES) extract could induce selective cell death in cancer cells and serve as a radiosensitizer for HNSCC. METHODS: HNSCC cells were pretreated with ES extract before radiation, and the radiosensitizing activity was assessed using a colony formation assay. Radiation-induced cell death was evaluated using an annexinV-FITC assay. Western blotting was performed to confirm cell death-related gene expression, including apoptosis and necrosis markers. RESULTS: ES extract significantly inhibited HNSCC cell viability (FaDu and SNU1076), while having minimal effect on normal HaCaT cells. When HNSCC cells were irradiated with 2, 4, or 8 Gy and cultured with ES extract (25 µg/mL), they exhibited increased radiation sensitivity compared to non-treated cells. The combination of ES extract and radiation resulted in increased cell death compared to non-treated, ES-treated, or irradiated cells. The apoptosis marker BAX and necrosis marker p-MLKL expression levels were also elevated following the combination treatment. CONCLUSION: ES extract demonstrated significant cytotoxic potential in HNSCC cells without affecting normal cells. It enhanced the radiosensitivity of HNSCC cells by upregulating BAX and p-MLKL expression, leading to increased cell death. These results suggest ES extract exhibits a potential radiosensitizing capacity in HNSCC.


Assuntos
Produtos Biológicos , Carcinoma de Células Escamosas , Ephedra sinica , Neoplasias de Cabeça e Pescoço , Radiossensibilizantes , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteína X Associada a bcl-2/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Linhagem Celular Tumoral , Morte Celular , Apoptose , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Necrose , Produtos Biológicos/farmacologia , Proteínas Quinases/farmacologia , Proteínas Quinases/uso terapêutico
6.
Clin Transl Gastroenterol ; 15(2): e00662, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099588

RESUMO

INTRODUCTION: Liver fibrosis results from chronic liver injury and inflammation, often leading to cirrhosis, liver failure, portal hypertension, and hepatocellular carcinoma. Progress has been made in understanding the molecular mechanisms underlying hepatic fibrosis; however, translating this knowledge into effective therapies for disease regression remains a challenge, with considerably few interventions having entered clinical validation. The roles of exosomes during fibrogenesis and their potential as a therapeutic approach for reversing fibrosis have gained significant interest. This study aimed to investigate the association between microRNAs (miRNAs) derived from serum exosomes and liver fibrosis and to evaluate the effect of serum exosomes on fibrogenesis and fibrosis reversal, while identifying the underlying mechanism. METHODS: Using serum samples collected from healthy adults and paired histologic patients with advanced fibrosis or cirrhosis, we extracted human serum exosomes by ultrahigh-speed centrifugation. Transcriptomic analysis was conducted to identify dysregulated exosome-derived miRNAs. Liver fibrosis-related molecules were determined by qRT-PCR, Western blot, Masson staining, and immunohistochemical staining. In addition, we analyzed the importance of serum exosome-derived miRNA expression levels in 42 patients with advanced fibrosis or cirrhosis. RESULTS: Exosome-derived miR-193a-5p and miR-381-3p were associated with fibrogenesis, as determined by transcriptomic screening. Compared with healthy control group, the high expression of serum exosome-derived miR-193a-5p and miR-381-3 in chronic hepatitis B (n = 42) was closely associated with advanced liver fibrosis and cirrhosis. In vitro , exosome-derived miRNA-193a-5p and miR-381-3p upregulated the expression of α-smooth muscle actin, collagen 1a1, and tissue inhibitors of metalloproteinase 1 in the human hepatic stellate cell line at both mRNA and protein levels. DISCUSSION: Serum exosome-derived miR-193a-5p and miR-381-3p regulated the adenosine 5'-monophosphate-activated protein kinase/transforming growth factor beta/Smad2/3 signaling pathway and promoted fibrogenesis.


Assuntos
Exossomos , MicroRNAs , Adulto , Humanos , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Cirrose Hepática/patologia , Fator de Crescimento Transformador beta/metabolismo , Adenosina/metabolismo , Adenosina/farmacologia
7.
In Vivo ; 38(1): 73-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148056

RESUMO

BACKGROUND/AIM: Oxidative stress, regulated by SOD2 and mitochondrial dynamics, contributes to muscle atrophy in diabetes. Ginger root extract (GRE) reduces oxidative stress. However, its effect on oxidative stress, mitochondrial dynamics, and muscle atrophy is not known in the diabetic muscle. This study examined the effect of GRE on intramuscular oxidative stress, mitochondrial dynamics, and muscle size in diabetic rats. MATERIALS AND METHODS: Twenty-six male Sprague-Dawley rats were randomly divided into control diet (CON; n=10), high-fat diet with one dose of 35 mg/kg streptozotocin (HFD; n=9), and high-fat diet with one dose of 35 mg/kg streptozotocin and 0.75% w/w GRE (GRE; n=7) fed for seven weeks. Subsequently, the muscle was analyzed for cross-sectional area (CSA), H2O2 concentration, and DRP-1, MFN2, Parkin, PINK1, SOD2 mRNA. Additionally, the protein levels of SOD2, DRP-1, DRP-1ser616, LC3AB, MFN2, OPA1, Parkin, and PINK1 were analyzed. CSA, H2O2 concentration, and gene and protein expression levels were analyzed using a one-way ANOVA. Correlations among intramuscular H2O2, CSA, and SOD2 protein were assessed using Pearson's bivariate correlation test. RESULTS: In the soleus, the GRE group had a greater CSA and lower intramuscular H2O2 concentration compared to the HFD group. Compared to the HFD group, the GRE group had higher SOD2 and DRP-1 mRNA levels and lower MFN2 and total OPA1 protein levels. H2O2 concentration was negatively correlated with CSA and positively correlated with SOD2. CONCLUSION: GRE attenuated intramuscular H2O2, mitochondrial fusion, and muscle size loss. These findings suggest that GRE supplementation in diabetic rats reduces oxidative stress, which may contribute to muscle size preservation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Gengibre , Ratos , Masculino , Animais , Dinâmica Mitocondrial , Diabetes Mellitus Experimental/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Peróxido de Hidrogênio , Ratos Sprague-Dawley , Músculo Esquelético , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Nutricionais , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Ubiquitina-Proteína Ligases , RNA Mensageiro/metabolismo , Dieta Hiperlipídica
8.
Placenta ; 143: 1-11, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788592

RESUMO

INTRODUCTION: Preeclampsia (PE) is a multisystemic disorder attributed to the excessive presentation of placenta-derived immunoinflammatory factors. PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy participates in the development and persistence of the inflammation. We hypothesized that dysregulated mitophagy might be involved in the pathogenesis of PE by promoting the activation of trophoblast pyroptosis that augment inflammation. METHODS: The morphology of mitochondrial in placenta were observed by transmission electron microscopy. The localization of PINK1 in the placenta was determined by immunohistochemistry. The expression levels of PINK1, PARKIN, LC3B, and SQSTM1 and pyroptosis-related molecules were compared between normal pregnancies and PE. We used hypoxia/reoxygenation (H/R) to stimulate the trophoblast hypoxia environment. HTR-8/SVneo cells were transfected with PINK1 plasmid and si-PINK1, respectively, and then were treated with H/R, to determine whether PINK1 regulated ROS and HTR-8/Svneo pyroptosis. Finally, ROS production was inhibited by MitoTEMPO to observe whether the pro-pyroptosis effect of PINK1 knockdown is alleviated. RESULTS: Swollen mitochondrial were accumulated in the PE placentae. PINK1 is localized on villus trophoblast (VTs) and extravillous trophoblast (EVTs). PINK1-mediated mitophagy was abolished in the PE placenta, while the levels of pyroptosis were induced. H/R stimulation aggravated the downregulation of mitophagy and the up-regulation of pyroptosis. Overexpression of PINK1 mitigated H/R-induced upregulation of ROS and pyroptosis while silencing PINK1 did the opposite. Reducing ROS production can effectively resist the pro-pyroptosis effect of PINK1 knockdown. DISCUSSION: This study demonstrated that PINK1-mediated mitophagy might played a protective role in PE by reducing ROS and trophoblast pyroptosis.


Assuntos
Mitofagia , Pré-Eclâmpsia , Piroptose , Trofoblastos , Feminino , Humanos , Hipóxia , Inflamação , Mitofagia/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Cancer Gene Ther ; 30(12): 1636-1648, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37726387

RESUMO

Glioblastoma (GBM) is a highly malignant type of brain tumor with limited treatment options. Recent research has focused on epigenetic regulatory factors, such as Enhancer of Zeste Homolog 2 (EZH2), which plays a role in gene expression through epigenetic modifications. EZH2 inhibitors have been developed as potential therapeutic agents for GBM, but resistance to these inhibitors remains a considerable challenge. This study aimed to investigate the role of ribosomal S6 protein kinase 4 (RSK4) in GBM and its association with resistance to EZH2 inhibitors. We first induced drug resistance in primary GBM cell lines by treatment with an EZH2 inhibitor and observed increases in the expression of stemness markers associated with glioblastoma stem cells (GSCs) in the drug-resistant cells. We also found high expression of RSK4 in GBM patient samples and identified the correlation of high RSK4 expression with poor prognosis and GSC marker expression. Further experiments showed that knocking down RSK4 in drug-resistant GBM cells restored their sensitivity to EZH2 inhibitors and decreased the expression of GSC markers, thus reducing their self-renewal capacity. From a mechanistic perspective, we discovered that RSK4 directly phosphorylates EZH2, activating the EZH2/STAT3 pathway and promoting resistance to EZH2 inhibitors in GBM. We also found that combining EZH2 inhibitors with an RSK4 inhibitor called BI-D1870 had better inhibitory effects on GBM occurrence and progression in both in vitro and in vivo experiments. In conclusion, this study demonstrates that RSK4 enhances cancer stemness and mediates resistance to EZH2 inhibitors in GBM. Combination treatment with EZH2 inhibitors and RSK4 inhibitors is a promising potential therapeutic strategy for GBM. Collectively, our results strongly demonstrate that RSK4 regulates the EZH2/STAT3 pathway to promote GSC maintenance and EZH2i resistance in a PRC2-independent manner, indicating that RSK4 is a promising therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Epigênese Genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
10.
Inflammopharmacology ; 31(5): 2719-2729, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37458952

RESUMO

Necroptosis, a programmed form of necrotic cell death carried out by receptor-interacting serine/threonine protein kinase 1 (RIPK1) and RIPK3, has been found to be implicated in the pathogenesis of Alzheimer's disease (AD). An FDA-approved anti-cancer drug, pazopanib, is reported to possess potent inhibitory effect against necroptosis via interfering with RIPK1. So far, there are no existing data on the influence of pazopanib on necroptotic pathway in AD. Thus, this study was designed to explore the impact of pazopanib on cognitive impairment provoked by ovariectomy (OVX) together with D-galactose (D-Gal) administration in rats and to scrutinize the putative signaling pathways underlying pazopanib-induced effects. Animals were allocated into four groups; the first and second groups were exposed to sham operation and administered normal saline and pazopanib (5 mg/kg/day, i.p.), respectively, for 6 weeks, while the third and fourth groups underwent OVX then were injected with D-Gal (150 mg/kg/day, i.p.); concomitantly with pazopanib in the fourth group for 6 weeks. Pazopanib ameliorated cognitive deficits as manifested by improved performance in the Morris water maze besides reversing the histological abnormalities. Pazopanib produced a significant decline in p-Tau and amyloid beta (Aß) plaques. The neuroprotective effect of pazopanib was revealed by hampering neuroinflammation, mitigating neuronal death and suppressing RIPK1/RIPK3/MLKL necroptosis signaling pathway. Accordingly, hindering neuroinflammation and the necroptotic RIPK1/RIPK3/MLKL pathway could contribute to the neuroprotective effect of pazopanib in D-Gal/OVX rat model. Therefore, this study reveals pazopanib as a valuable therapeutic agent in AD that warrants future inspection to provide further data regarding its neuroprotective effect.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Feminino , Ratos , Animais , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Galactose/farmacologia , Necroptose , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Transdução de Sinais , Cognição , Apoptose
11.
Brain Pathol ; 33(5): e13175, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259617

RESUMO

Alpha-synuclein (αsyn) aggregates are pathological features of several neurodegenerative conditions including Parkinson disease (PD), dementia with Lewy bodies, and multiple system atrophy (MSA). Accumulating evidence suggests that mitochondrial dysfunction and impairments of the autophagic-lysosomal system can contribute to the deposition of αsyn, which in turn may interfere with health and function of these organelles in a potentially vicious cycle. Here we investigated a potential convergence of αsyn with the PINK1-PRKN-mediated mitochondrial autophagy pathway in cell models, αsyn transgenic mice, and human autopsy brain. PINK1 and PRKN identify and selectively label damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) to mark them for degradation (mitophagy). We found that disease-causing multiplications of αsyn resulted in accumulation of the ubiquitin ligase PRKN in cells. This effect could be normalized by starvation-induced autophagy activation and by CRISPR/Cas9-mediated αsyn knockout. Upon acute mitochondrial damage, the increased levels of PRKN protein contributed to an enhanced pS65-Ub response. We further confirmed increased pS65-Ub-immunopositive signals in mouse brain with αsyn overexpression and in postmortem human disease brain. Of note, increased pS65-Ub was associated with neuronal Lewy body-type αsyn pathology, but not glial cytoplasmic inclusions of αsyn as seen in MSA. While our results add another layer of complexity to the crosstalk between αsyn and the PINK1-PRKN pathway, distinct mechanisms may underlie in cells and brain tissue despite similar outcomes. Notwithstanding, our finding suggests that pS65-Ub may be useful as a biomarker to discriminate different synucleinopathies and may serve as a potential therapeutic target for Lewy body disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Camundongos Transgênicos , Mitofagia , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Ubiquitina/metabolismo , Ubiquitina/farmacologia , Ubiquitina-Proteína Ligases/genética
12.
Aquat Toxicol ; 261: 106616, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348385

RESUMO

Oxytetracycline (OTC), a commonly used tetracycline antibiotic in aquaculture, has been found to cause significant damage to the liver of largemouth bass (Micropterus salmoides). This study revealed that OTC can lead to severe histopathological damage, structural changes at the cellular level, and increased levels of reactive oxygen species (ROS) in M. salmoides. Meanwhile, OTC impairs the activities of antioxidant enzyme (such as T-SOD, CAT, GST, GR) by suppressing the activation of MAPK/Nrf2 pathway. OTC disrupts mitochondrial dynamics and mitophagy through via PINK1/Parkin pathway. The accumulation of damaged mitochondria, combined with the inhibition of the antioxidant enzyme system, contributes to elevated ROS levels and oxidative liver damage in M. salmoides. Further investigations demonstrated that an enzyme-treated soy protein (ETSP) dietary supplement can help maintain mitochondrial dynamic balance by inhibiting the PINK1/Parkin pathway and activate the MAPK/Nrf2 pathway to counteract oxidative damage. In summary, these findings highlight that exposure to OTC disrupts mitochondrial dynamics and inhibits the antioxidant enzyme system, ultimately exacerbating oxidative liver damage in M. salmoides. We propose the use of a dietary supplement as a preventive measure against OTC-related side effects, providing valuable insights into the mechanisms of antibiotic toxicity in aquatic environments.


Assuntos
Bass , Oxitetraciclina , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Bass/metabolismo , Oxitetraciclina/toxicidade , Dinâmica Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Fígado , Antibacterianos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia
13.
J Clin Periodontol ; 50(9): 1264-1279, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366309

RESUMO

AIM: Necroptosis participates in the pathogenesis of many inflammatory diseases, including periodontitis. Here, we aimed to investigate the role and mechanism of necroptosis inhibitors in attenuating periodontitis. MATERIALS AND METHODS: The Gene Expression Omnibus (GEO) dataset GSE164241 was re-analysed to identify the role of necroptosis in periodontitis. Gingival specimens from healthy subjects or periodontitis patients were collected to evaluate the expression level of necroptosis-associated proteins. The therapeutic effect of necroptosis inhibitors on periodontitis was assessed in vivo and in vitro. Moreover, Transwell assays and Western blotting and siRNA transfection were used to identify the effects of necroptotic human gingival fibroblasts (hGFs) on THP-1 macrophages. RESULTS: Re-analysis revealed that gingival fibroblasts (GFs) in periodontitis gingiva showed the highest area under the curve score of necroptosis. Elevated levels of necroptosis-associated proteins were identified in GFs in periodontitis gingiva collected from patients and mice. In ligature-induced periodontitis mice, local administration of receptor interacting protein kinase 3(RIPK3) inhibitor GSK'872 or sh-mixed-lineage kinase domain-like pseudokinase (Mlkl) markedly abrogated necroptosis and rescued periodontitis. Analogously, necroptosis inhibitors alleviated the inflammatory response and release of damage-associated molecular patterns in lipopolysaccharide- or LAZ (LPS + AZD'5582 + z-VAD-fmk, necroptosis inducer)-induced GFs and then reduced THP-1 cell migration and M1 polarization. CONCLUSIONS: Necroptosis in GFs aggravated gingival inflammation and alveolar bone loss. Necroptosis inhibitors attenuate this process by modulating THP-1 macrophage migration and polarization. This study offers novel insights into the pathogenesis and potential therapeutic targets of periodontitis.


Assuntos
Gengivite , Periodontite , Humanos , Camundongos , Animais , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Gengiva/metabolismo , Necroptose , Periodontite/metabolismo , Fibroblastos , Gengivite/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia
14.
J Hazard Mater ; 454: 131562, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37148789

RESUMO

Environmental exposure to crystalline silica (CS) can lead to silicosis. Alveolar macrophages (AMs) play a crucial role in the pathogenesis of silicosis. Previously, we demonstrated that enhancing AMs mitophagy exerted protective effects on silicosis with a restrained inflammatory response. However, the exact molecular mechanisms are elusive. Pyroptosis and mitophagy are two different biological processes that determine cell fate. Exploring whether there were interactions or balances between these two processes in AMs would provide new insight into treating silicosis. Here we reported that crystalline silica induced pyroptosis in silicotic lungs and AMs with apparent mitochondria injury. Notably, we identified a reciprocal inhibitory effect between mitophagy and pyroptosis cascades in AMs. By enhancing or diminishing mitophagy, we demonstrated that PINK1-mediated mitophagy helped clear damaged mitochondria to negatively regulate CS-induced pyroptosis. While constraining pyroptosis cascades by NLRP3, Caspase1, and GSDMD inhibitors, respectively, displayed enhanced PINK1-dependent mitophagy with lessened CS-injured mitochondria. These observed effects were echoed in the mice with enhanced mitophagy. Therapeutically, we demonstrated abolishing GSDMD-dependent pyroptosis by disulfiram attenuated CS-induced silicosis. Collectively, our data demonstrated that macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis, which may provide potential therapeutic targets.


Assuntos
Fibrose Pulmonar , Silicose , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Mitofagia , Piroptose , Macrófagos , Silicose/tratamento farmacológico , Silicose/metabolismo , Silicose/patologia , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Proteínas Quinases/uso terapêutico , Mitocôndrias
15.
Bull Exp Biol Med ; 174(6): 707-710, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37157044

RESUMO

We studied the effects of age and suntan on the expression of necroptosis signaling molecules (RIPK1, RIPK3, and MLKL kinases) and first TNF receptor (TNFR1) in isolated skin cells from women undergoing facelift surgery. In women above 50 years, the expression of the TNFR1, kinases RIPK1, RIPK3, and MLKL, the phosphorylated forms of these kinases was significantly (p<0.05) increased in comparison with the corresponding parameters in women under 30 years. The expression of all necroptosis proteins and TNFR1 in women with suntan was significantly (p<0.05) higher than in those without tan. Cells from the surgical material were incubated with TNFα to determine the level of induced necroptosis. In women aged >50 years and women with suntan, the expression of phosphorylated forms of kinases was significantly increased, which attested to necroptosis activation. This study allowed identifying the targets on skin cells for prevention of necrosis and inflammation after facelift surgery.


Assuntos
Proteínas Quinases , Bronzeado , Feminino , Humanos , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Necroptose , Transdução de Sinais , Sistemas do Segundo Mensageiro , Apoptose
16.
Neurotoxicology ; 96: 197-206, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37160207

RESUMO

Gulf War Illness (GWI) is an unrelenting multi-symptom illness with chronic central nervous system and peripheral pathology affecting veterans from the 1991 Gulf War and for which effective treatment is lacking. An increasing number of studies indicate that persistent neuroinflammation is likely the underlying cause of cognitive and mood dysfunction that affects veterans with GWI. We have previously reported that fingolimod, a drug approved for the treatment of relapsing-remitting multiple sclerosis, decreases neuroinflammation and improves cognition in a mouse model of Alzheimer's disease. In this study, we investigated the effect of fingolimod treatment on cognition and neuroinflammation in a mouse model of GWI. We exposed C57BL/6 J male mice to GWI-related chemicals pyridostigmine bromide, DEET, and permethrin, and to mild restraint stress for 28 days (GWI mice). Control mice were exposed to the chemicals' vehicle only. Starting 3 months post-exposure, half of the GWI mice and control mice were orally treated with fingolimod (1 mg/kg/day) for 1 month, and the other half were left untreated. Decreased memory on the Morris water maze test was detected in GWI mice compared to control mice and was reversed by fingolimod treatment. Immunohistochemical analysis of brain sections with antibodies to Iba1 and GFAP revealed that GWI mice had increased microglia activation in the hippocampal dentate gyrus, but no difference in reactive astrocytes was detected. The increased activation of microglia in GWI mice was decreased to the level in control mice by treatment with fingolimod. No effect of fingolimod treatment on gliosis in control mice was detected. To explore the signaling pathways by which decreased memory and increased neuroinflammation in GWI may be protected by fingolimod, we investigated the involvement of the inflammatory signaling pathways of protein kinase R (PKR) in the cerebral cortex of these mice. We found increased phosphorylation of PKR in the brain of GWI mice compared to controls, as well as increased phosphorylation of its most recognized downstream effectors: the α subunit of eukaryotic initiation factor 2 (eIF2α), IκB kinase (IKK), and the p65 subunit of nuclear factor-κB (NFκB-p65). Furthermore, we found that the increased phosphorylation level of these three proteins were suppressed in GWI mice treated with fingolimod. These results suggest that activation of PKR and NFκB signaling may be important for the regulation of cognition and neuroinflammation in the GWI condition and that fingolimod, a drug already approved for human use, may be a potential candidate for the treatment of GWI.


Assuntos
Cloridrato de Fingolimode , Síndrome do Golfo Pérsico , Animais , Masculino , Camundongos , Amnésia/metabolismo , Modelos Animais de Doenças , Cloridrato de Fingolimode/uso terapêutico , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/farmacologia , Guerra do Golfo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Síndrome do Golfo Pérsico/induzido quimicamente , Síndrome do Golfo Pérsico/tratamento farmacológico , Síndrome do Golfo Pérsico/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Proteínas Quinases/uso terapêutico , Brometo de Piridostigmina/uso terapêutico , Brometo de Piridostigmina/farmacologia
17.
Nat Rev Immunol ; 23(12): 787-806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37188939

RESUMO

Protein kinases play a major role in cellular activation processes, including signal transduction by diverse immunoreceptors. Given their roles in cell growth and death and in the production of inflammatory mediators, targeting kinases has proven to be an effective treatment strategy, initially as anticancer therapies, but shortly thereafter in immune-mediated diseases. Herein, we provide an overview of the status of small molecule inhibitors specifically generated to target protein kinases relevant to immune cell function, with an emphasis on those approved for the treatment of immune-mediated diseases. The development of inhibitors of Janus kinases that target cytokine receptor signalling has been a particularly active area, with Janus kinase inhibitors being approved for the treatment of multiple autoimmune and allergic diseases as well as COVID-19. In addition, TEC family kinase inhibitors (including Bruton's tyrosine kinase inhibitors) targeting antigen receptor signalling have been approved for haematological malignancies and graft versus host disease. This experience provides multiple important lessons regarding the importance (or not) of selectivity and the limits to which genetic information informs efficacy and safety. Many new agents are being generated, along with new approaches for targeting kinases.


Assuntos
Doenças do Sistema Imunitário , Proteínas Quinases , Humanos , Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Doenças do Sistema Imunitário/tratamento farmacológico
18.
Acta Physiol (Oxf) ; 238(3): e13975, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042471

RESUMO

AIM: To explore the beneficial effects of L-carnitine on cardiac microvascular dysfunction in diabetic cardiomyopathy from the perspectives of mitophagy and mitochondrial integrity. METHODS: Male db/db and db/m mice were randomly assigned to groups and were treated with L-carnitine or a solvent for 24 weeks. Endothelium-specific PARL overexpression was attained via adeno-associated virus serotype 9 (AAV9) transfection. Adenovirus (ADV) vectors overexpressing wild-type CPT1a, mutant CPT1a, or PARL were transfected into endothelial cells exposed to high glucose and free fatty acid (HG/FFA) injury. Cardiac microvascular function, mitophagy, and mitochondrial function were analyzed by immunofluorescence and transmission electron microscopy. Protein expression and interactions were assessed by western blotting and immunoprecipitation. RESULTS: L-carnitine treatment enhanced microvascular perfusion, reinforced endothelial barrier function, repressed the endothelial inflammatory response, and maintained the microvascular structure in db/db mice. Further results demonstrated that PINK1-Parkin-dependent mitophagy was suppressed in endothelial cells suffering from diabetic injury, and these effects were largely alleviated by L-carnitine through the inhibition of PARL detachment from PHB2. Moreover, CPT1a modulated the PHB2-PARL interaction by directly binding to PHB2. The increase in CPT1a activity induced by L-carnitine or amino acid mutation (M593S) enhanced the PHB2-PARL interaction, thereby improving mitophagy and mitochondrial function. In contrast, PARL overexpression inhibited mitophagy and abolished all the beneficial effects of L-carnitine on mitochondrial integrity and cardiac microvascular function. CONCLUSION: L-carnitine treatment enhanced PINK1-Parkin-dependent mitophagy by maintaining the PHB2-PARL interaction via CPT1a, thereby reversing mitochondrial dysfunction and cardiac microvascular injury in diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Camundongos , Masculino , Animais , Mitofagia , Células Endoteliais/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Carnitina/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia
19.
Bioresour Technol ; 379: 129004, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004888

RESUMO

Flocculation of brewer's yeast is an environment-friendly and cost-effective way to separate yeast cells from fermentation broth for subsequent production. Diverse genetic background and complex fermentation environment cause difficulty to explore flocculation mechanism and regulate yeast flocculation. In this study, comparative transcriptome analysis was carried out between an industrial brewing yeast and its flocculation-enhanced mutant strain, unveiling the differentially-expressed genes were enriched in response to stresses. The expression level of Lg-FLO1 was the highest among all FLO genes. Environmental stresses of fermentation were simulated to stimulated yeast cells and it was found that nitrogen and amino acid starvation promoted the process of flocculation. It is the first time to reveal the nutrient-responsive gene RIM15 has a novel genetic function regulating flocculation. The study provides novel direction and strategies to manage yeast flocculation and achieve effective cell utilization in fermentation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fermentação , Floculação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Perfilação da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia
20.
Ageing Res Rev ; 85: 101841, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36608709

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in the world. Motor impairment seen in PD is associated with dopaminergic neurotoxicity in the striatum, and dopaminergic neuronal death in the substantia nigra pars compacta. Cell death has a significant effect on the development and progression of PD. Extensive research over the last few decades has unveiled new regulated cell death (RCD) mechanisms that are not dependent on apoptosis such as necroptosis, ferroptosis, and others. In this review, we will overview the mechanistic pathways of different types of RCD. Unlike accidental cell death, RCD subroutines can be regulated and the RCD-associated kinases are potential druggable targets. Hence, we will address an overview and analysis of different kinases regulating apoptosis such as receptor-interacting protein kinase 1 (RIPK-1), RIPK3, mixed lineage kinase (MLK), Ataxia telangiectasia muted (ATM), cyclin-dependent kinase (CDK), death-associated protein kinase 1 (DAPK1), Apoptosis-signaling kinase-1 (ASK-1), and Leucine-rich repeat kinase-2 (LRRK2). In addition to the role of RIPK1, RIPK3, and Mixed Lineage Kinase Domain like Pseudokinase (MLKL) in necroptosis. We also overview functions of AMP-kinase (AMPK), protein kinase C (PKC), RIPK3, and ATM in ferroptosis. We will recap the anti-apoptotic, anti-necroptotic, and anti-ferroptotic effects of different kinase inhibitors in different models of PD. Finally, we will discuss future challenges in the repositioning of kinase inhibitors in PD. In conclusion, this review kicks-start targeting RCD from a kinases perspective, opening novel therapeutic disease-modifying therapeutic avenues for PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Apoptose , Morte Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...